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A procedure for phase extension in electron crystallography is proposed based

on the iterative Fienup±Gerchberg±Saxton algorithm in combination with the

use of discrete Hilbert transforms. This transform is used to provide

oversampling in reciprocal space, thus satisfying the Shannon sampling

requirement and introducing re¯ections with fractional indices. When the

procedure is combined with the knowledge of a small set of strong phased Bragg

re¯ections from electron-microscope images (or direct methods), the magni-

tudes of many non-Bragg re¯ections can be calculated with useful accuracy, thus

enhancing the performance of the iterative algorithm for phase extension. The

effects of various constraints used in the iterative algorithm are discussed. In this

way, it is shown that the iterative algorithm conventionally used for phasing

diffuse scattering from non-periodic objects can also be applied to problems in

conventional crystallography to ®nd the phases of high-order (resolution) beams

from a known set of low-order (resolution) phases.

1. Introduction

It was pointed out long ago (Sayre, 1952) that Bragg sampling

undersamples the intensity scattered by a molecule in a

crystal. By this it is meant that the Shannon or Nyquist

sampling interval needed to synthesize the scattered intensity

as a continuous function of angle would require diffraction

from a crystal at half the Bragg angle (in one dimension). The

intensity scattered by the molecule is here treated as a band-

limited function, with the `band-limit' applied in real space by

the autocorrelation function of the molecule, which has twice

the size of the molecule. It has also been found that, if the

scattering from an isolated charge density can be sampled at

the Shannon rate, then the phase problem can usually be

solved using the iterative Fienup±Gerchberg±Saxton algor-

ithm, which we here refer to as HiO (hybrid input±output)

(Fienup, 1982). [Ambiguities can be expected, for example,

from the rare homomorphic crystals (Buerger, 1954).] For

recent experimental examples of the inversion to images of

soft X-ray and electron diffraction patterns from isolated

objects, see He et al. (2003) and Zuo et al. (2003). The algor-

ithm is based on three constraints ± the known sign of the

(real) charge density, the known Fourier moduli, and the

known boundary of the object.

The success of the HiO algorithm in solving the phase

problem for non-crystallographic isolated objects whose

boundary (or `support') is approximately known has encour-

aged many efforts to apply this method to crystals, using, for

example `non-crystallographic' symmetries, ®ber diffraction

(Millane, 1990; Millane & Stroud, 1997; De Caro et al. 2002)

and ®nite-crystal effects. Since the number of unknown phases

is equal to the number of Fourier equations linking real and

reciprocal space if the Shannon sampling interval is respected,

application of the method to crystals reduces to the problem

of ®nding the `half-order' Bragg re¯ections that would be

produced by doubling the unit-cell dimensions but not the size

of the molecule within each cell (`oversampling'). (The

method of solvent ¯attening, applied to proteins surrounded

by a water jacket of known density, is closely related.)

Recently, it has been pointed out that a Hilbert transform

relationship exists between the real and imaginary parts of the

transform of the density of a single molecule (the scattering

factor for the molecule), since the density for an isolated

molecule is a causal function (zero for negative arguments) for

some choice of origin (Mishnev, 1996). Application of this

condition is thus equivalent to the application of a known

support condition in the HiO algorithm, which is required for

its convergence. However the Hilbert transform also provides

an expression for the `half-order' re¯ections mentioned above

in terms of the known complex Bragg re¯ections. The Hilbert

transform has been proposed previously as a means for phase

extension and improvement (Zanotti et al., 1996), although

later it was shown by De Caro et al. (2002) that a non-realistic

weighting scheme could then be involved. By phase extension,

we refer to the improvement of resolution by phasing high-

order Bragg beams based on certain known phases for low-

order re¯ections. (Phase improvement refers to a similar

process without resolution improvement.)
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In this paper, our aim is phase extension for increased

resolution in electron crystallography. Thus, we seek to use

these ideas to solve the phase problem for high orders for a

thin organic crystal (perhaps a protein monolayer), using

electron diffraction intensity data, together with some elec-

tron-microscope images to provide structure-factor phases for

some low orders. In a previous paper, we have shown how the

®nite thickness of such a thin crystal measured along the beam

direction can be used to provide a compact support condition

and so assist in solving the phase problem (Spence et al., 2003).

The aim here is to use the Hilbert transform and HiO itera-

tions to ®nd the phases of the higher-order Bragg beams, and

so improve the resolution of the images. Experimentally, the

collection of high-resolution images of organic thin crystals is

extremely dif®cult because of radiation damage effects,

especially if data are required in three dimensions. Diffraction

data are much less demanding to collect. Since the lowest

resolution at which amino acids can be identi®ed is about 3 AÊ ,

a useful goal would be to extend image data that provides

phased Bragg beams to 5 AÊ resolution out to, say, 2 AÊ reso-

lution using the HiO algorithm and high-order Bragg-beam

intensities. Our overall strategy is to use the Hilbert transform

and the fewest possible image phases to ®nd some low-order

half-order re¯ections. Then the HiO algorithm uses all this

information to phase the full set of high-resolution Bragg

beams. In the process, it ®nds all the remaining fractional

order beams. The resulting charge-density map shows the

molecule within a doubled cell, surrounded by a border of

zero charge density. This has been referred to elsewhere as the

so-called `con®ned structures' de®ned by De Caro et al. (2002).

For continuously bonded solids (such as silicon), this leads to

truncated bonds which must be re-assembled.

2. Fractional-indexed reflections and the Hilbert
transform

By application of the Shannon theorem and the Hilbert

transform, Mishnev (1996) obtains the following expression

for complex half-order structure factors in terms of Bragg

structure factors:

F�h0 � 0:5; k0 � 0:5; l0 � 0:5�
� 1

i�3

X
h;k;l

F�h; k; l�
�h0 ÿ h� 0:5��k0 ÿ k� 0:5��l0 ÿ l � 0:5� : �1�

These fractional order structure factors are samples of the

molecular scattering factor at points midway between Bragg

beams. We have con®rmed using arti®cial superlattice calcu-

lations that (1) predicts the same half-order structure factors

as those obtained by doubling the cell constants (but not the

size of the molecule within the cell), on the condition that they

have the same cell origin. This can be referred to as the

`con®ned structure' of De Caro et al. (2002).

We have used the structure of �-copper phthalocyanine

(�-CuPc) with a monoclinic cell [a = 2.592, b = 0.379, c =

2.392 nm and � = 90.4� (space group: C2=c) (Ashida et al.,

1966; Brown, 1968)] for these two-dimensional simulations.

Since only Bragg intensities are known initially, we ®rst

attempt to estimate the fractional order structure factors from

these intensities alone, then add in increasing numbers of

known phases from images. We therefore use the following

formulas to compute two-dimensional structure factors:

jF�h0 � 0:5; k0 � 0:5�j � 1

�2

X
h;k

F�h; k�
�h0 ÿ h� 0:5��k0 ÿ k� 0:5�

�����
�����
�2�

and

jF�h0 � 0:5; k�j � 1

i�

X
h

F�h; k�
�h0 ÿ h� 0:5�

�����
�����: �3�

The results are shown in Table 1 for some low-order non-

Bragg re¯ections with indices smaller than 3. In the table, the

symbols h0 and k0 represent the indices of re¯ections that may

have either integer or fractional values.

The third column in Table 1 lists the true values of the

fractional-index structure factors, as obtained from the

Fourier transform of the molecule. In column 4, for com-

parison, we list values predicted using slightly modi®ed

versions of (2) and (3), so as to use only the magnitudes on the

left of the equations. [The term F(h,k) is replaced by |F(h, k)|

in (2) and (3)]. Thus the sum is taken over only the magnitude

Table 1
Structure factors for some non-Bragg re¯ections with fractional indices
for �-copper phthalocyanine structure.

The structure factors calculated using known atomic coordinates [|Fg| =P
f exp(ÿ2�ir � g)=V] are listed in column 3, based on the Fourier transform of

one molecule. These are compared with those calculated using the Hilbert
transform [equations (2) and (3)] applied to: (i) the magnitudes of the 3481
Bragg re¯ections with |h| < 12 and |k| < 29 (|Fg|_1 in column 4); (ii) 137 strong
phased Bragg re¯ections with |h| < 12 and |k| < 12 (|Fg|_2 in column 5); (iii) 81
strong phased re¯ections with |h| < 12 and |k| < 12 (|Fg|_3 in column 6); and (iv)
23 strong phased re¯ections with |h| < 12 and |k| < 12 (|Fg|_4 in column 7). The
Rm factor [equation (4)] is also given for each set of data.

h0 k0
|Fg|
true

|Fg|_1

intensity
only

|Fg|_2

137 phases
|Fg|_3

81 phases
|Fg|_4

23 phases

0 0.5 5.7714 5.7160 5.7740 5.7765 5.7753
0.5 0 5.7500 5.7098 5.7563 5.7523 5.7404
0.5 0.5 3.6113 3.5449 3.6196 3.6275 3.6332
0.5 ÿ0.5 3.6000 3.5633 3.6043 3.5904 3.5685
0 1.5 1.3265 1.1386 1.3170 1.3245 1.3210
0.5 1.5 0.9378 0.7519 0.9273 0.9425 0.9346
0.5 2 0.5565 0.7109 0.5671 0.5563 0.6114
1.5 0 1.2317 1.0969 1.2237 1.2114 1.1694
1.5 0.5 0.7096 0.6645 0.7130 0.7026 0.7265
1.5 ÿ0.5 0.8681 0.7580 0.8500 0.8198 0.7470
1.5 ÿ1.5 0.2318 0.3164 0.2312 0.1167 0.0801
1.5 1.5 0.2391 0.2491 0.2509 0.1954 0.2285
1.5 2.5 0.0799 0.1232 0.0664 0.0072 0.1587
2 0.5 1.1192 0.9630 1.1008 1.1283 1.0352
2 1.5 0.4007 0.1711 0.3814 0.5224 0.4030
2 2.5 0.6134 0.2301 0.5978 0.4520 0.2659
2.5 1.5 0.7483 0.4603 0.7265 0.8458 0.7126
2.5 ÿ2 0.7176 0.1856 0.7151 0.5368 0.4911
2.5 2.5 0.4310 0.1410 0.4294 0.3269 0.2345
Rm 0.49 0.15 0.30 0.68



of 3481 simulated Bragg re¯ections with a maximum resolu-

tion of 0.9 AÊ . These predictions are seen to show poor

agreement with the true values in column 3, since the real

coef®cients in the sum do not represent a causal density.

Mishnev (1996) has discussed the Hilbert transform for

intensity, and it has been shown that, in the general case,

`intensity from intensities' is not feasible. This problem was

also addressed by means of a probabilistic approach

(Giacovazzo et al., 1999) and the Patterson property of

con®ned structures (De Caro et al., 2002). The situation

improves if some known phases are used.

In columns 5±7, a steadily decreasing number of phases are

added to the sum on the right of (2) and (3) in order to

determine the lowest-resolution images that will accurately

predict the half-orders needed by the HiO algorithm for

convergence. At the bottom of each column is given an R

factor to indicate agreement with the true fractional orders:

Rm �
P jjFknown

g j ÿ jFcal
g jjP jFknown

g j : �4�

Here, jFknown
g j are the true magnitudes, while jFcal

g j are the

calculated magnitudes using (2) and (3). We see that the set of

3481 intensities can be used together with only 137 known

phases to give a rather accurate prediction (R = 0.15) of the

fractional-order complex structure factors. We note that, for

these calculations, the value of F(000) is needed, which has a

magnitude much larger than that of other re¯ections.

Empirical tests also show that, when the resolution of the

calculated fractional-indexed re¯ections is higher than that of

known Bragg re¯ections, a large error occurs. This may result

from the fact that (2) and (3) cannot be used owing to the

limited number re¯ections with known phases. We note also

that, if the number of known Bragg re¯ections is too small, the

error due to truncation becomes very large (column 7 in

Table 1).

3. Phase-extension results

Mathematical details of the HiO algorithm are given in

Weierstall et al. (2001). In this application, we modify the

algorithm as follows:

1. Upsampling the magnitudes of the given Bragg beams

|F(u, v)| of dimension n � n by a factor of 2 generates |G(u, v)|

with dimension 2n � 2n by assigning arbitrary magnitudes to

fractional-indexed re¯ections in between the Bragg re¯ec-

tions. This is equivalent to surrounding each molecule in the

crystal by an envelope (similar to a water jacket around a

protein) of zero density, and doubling every cell dimension to

accommodate the jacket.

2. We assign each re¯ection in G(u, v) a random phase to

obtain the starting structure-factor matrix denoted Gk(u, v) =

|Gk(u, v)| exp[i�k(u, v)], where k represents the iteration

number.

3. Apply the known data to Gk(u, v) to get G0k�u; v�:

G0k�u; v� � jF�u; v�j exp�i�k�u; v�� if �u; v� 2 L�u; v�
Gk�u; v��F�0; 0�=Gk�0; 0�� if �u; v� =2 L�u; v�.

�
�5�

Here, L(u, v) represents the set of points in reciprocal space at

which the magnitudes of Fourier coef®cients |F(u, v)| are

known. For the in between re¯ections, whose magnitudes are

unknown, their values are taken from the current estimate

Gk(u, v) with a normalization factor F(0, 0)=Gk(0, 0). The

normalization factor can also be calculated usingP
L�u;v�

F�u; v�� P
L�u;v�

Gk�u; v�:

In this step, any additional valid constraints can also be

applied: G0k�u; v� ÿ!constraints
G0k�u; v� (details of constraints will

be discussed in x4).

4. Inverse Fourier transform G0k�u; v� to obtain the potential

in real space: G0k�u; v� ÿ!iFFT
g0k�x; y�.

5. Apply the support S(x, y) in real space as for the hybrid

input±output (HiO) method:

gk�1�x; y� � g0k�x; y� if �x; y� 2 S�x; y�
gk�x; y� ÿ �g0k�x; y� if �x; y� =2 S�x; y�.

�
�6�

Here S(x, y) is a two-dimensional support de®ned as the region

outside of which the potential is known to be zero, and � is a

feedback parameter between 0.5 and 1. For the error-reduc-

tion (ER) method, the current potential is de®ned as:

gk�1�x; y� � g0k�x; y� if �x; y� 2 S�x; y�
0 if �x; y� =2 S�x; y�.

�
�7�

Here we can also apply other real-space constraints, such as

the known sign of the potential or the histogram constraint:

gk�1�x; y� ÿ!constraint
gk�1�x; y�:

6. Fourier transform gk+1(x, y) to obtain Gk+1(u, v).

7. Go to step 3 with k replaced by (k + 1).

We have used the Hilbert transform equations to obtain

many reliable magnitudes of the non-Bragg re¯ections. We

then use these estimates in the HiO algorithm as additional

known constraints. Thus, in addition to the magnitudes of the

Bragg beams, the calculated magnitudes of some non-Bragg

re¯ections from the Hilbert transform were also used in step 3

in the HiO algorithm. The progress of the iterations can be

followed using a normalized root-mean-square (RMS) error

(Fienup, 1982), which shows the amount by which the poten-

tial violates real-space constraints outside the support (where

it must be zero):

RMS � P
�x;y� =2 S

jg�x; y�j2�P
x;y

jg�x; y�j2
" #1=2

: �8�

The cross-correlation coef®cient (CC) between the true and

estimated structures was also used to monitor the convergence

of the algorithm (Read, 1986):

CC �
P

h jFk
hjjFc

hj cos��k
h ÿ�c

h�
�Ph jFk

nj2
P

h jFc
hj2�1=2

; �9�
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where Fk
h � jFk

hj exp��k
h� is the structure factor of the known

structure and Fc
h � jFc

hj exp��c
h� is that of the current calcu-

lated structure. The value of CC ranges from 1 representing

perfect agreement to ÿ1 for an anticorrelated result. We note

that CC cannot be evaluated for an unknown structure, hence

it is important to show that the dependence of RMS (which is

known for an unknown structure) is monotonic with CC.

We used the data with 81 phased re¯ections (column 6 in

Table 1) as a test of phase extension. As listed in Table 1, Rm is

0.30 when all fractional re¯ections with resolution out to 0.9 AÊ

were calculated. For the potential map, we did not include so

many high-resolution fractional-order re¯ections. Only 712

magnitudes of non-Bragg beams with resolution down to 2.0 AÊ

were calculated using (2) and (3), based on the known

re¯ections, giving Rm = 0.1889 [equation (4)]. Compared to the

results listed in Table 1, we have reduced the resolution of the

fractional-indexed re¯ections, which leads to an improvement

in the accuracy of the calculated magnitudes. The potential

obtained by Fourier synthesis using the 81 known re¯ections is

shown in Fig. 1 and its cross-correlation coef®cient, calculated

using (9), is CC = 0.81. The calculated magnitudes and

partially known phases were taken as known constraints in the

iterative Fienup±Gerchberg±Saxton algorithm. We used 15

HiO iterations followed by 5 ER iterations as one cycle with a

feedback factor of 0.78. The program runs 5 cycles altogether.

Fig. 2 shows the reconstructed potential after 100 iterations,

and the RMS and CC values as a function of iteration number.

The ®nal CC value has been improved to 0.96 by this method,

showing that the phase extension is successful. If the number

of Bragg beams used with known phases is much smaller (e.g.

only 27 as listed in column 7 in Table 1), then phase extension

using the iterative algorithm does not improve the cross-

correlation coef®cient.

4. Discussion

Constraints play a very important role in the HiO iterative

algorithm. Constraints in reciprocal and real space are the key

points that drive the iterations toward a unique solution. A

constraint is effective if many equations result from its

application. Non-negativity is a well known constraint used in

X-ray and electron crystallography when kinematic diffraction

conditions apply. In recent work, two approaches have

commonly been used: one is to invert the sign of all negative

points and the other is to set all the negative points to zero or a

constant, determined by some property of the crystal, for

example, the average potential. The kinematic diffraction

condition also ensures that the structure factors obey Friedel's

law (|F| = | �F| and �F = ÿ��F).

Symmetry can also be a powerful constraint if it is known.

We must distinguish two kinds of symmetries: one is the non-

crystallographic symmetry and the other is the conventional

crystallographic symmetry (space group). Non-crystal-

lographic symmetry can relate the fractional-order re¯ections,

Figure 1
Calculated potential of the �-copper phthalocyanine structure by the
Fourier synthesis using 81 strong Bragg re¯ections with correct phases. Its
CC value is calculated to be 0.81 compared to the known structure at
0.9 AÊ resolution.

Figure 2
(a) Reconstructed (010) potential of �-copper phthalocyanine using the
iterative Fienup±Gerchberg±Saxton phase-extension algorithm after 100
iterations. The phases are improved and the cross-correlation coef®cient
(CC) is 0.96 for the ®nal iteration. (b) The normalized root-mean-square
error (RMS) and CC as a function of iteration.



and this has been a critical factor in some successful applica-

tions (Millane & Stroud, 1997). However, obtaining non-

crystallographic symmetries for a crystal requires prior

knowledge of the local symmetry of molecules in the unit cell

(point group), e.g. the conformation of the molecule, and this

must be a point-group symmetry which is incompatible with

the periodic reciprocal lattice, such as a ®vefold rotation axis

in a quasicrystal or virus, in order to derive information

relating points off the reciprocal lattice. Crystallographic

symmetry as revealed by the space group of the crystal is also

useful. Although the distribution of measured structure-factor

magnitudes obeys the requirements imposed by crystal-

lographic symmetry, it can also be used as a constraint for

current estimates in the HiO.

Some previously used density-modi®cation techniques, e.g.

real-space histogram matching (Zhang & Main, 1990) and

identi®cation of the molecular envelope (Wang, 1985) can also

be effective. Those constraints take effect only in the region

where the support S(x, y) is not zero. It would be helpful to

apply histogram constraints in reciprocal space to establish

more equations, since many fractionally indexed re¯ections

with unknown magnitudes have been added. At present, this

does not seem possible. Unlike a general Wilson statistical

property of structure factors with integral indices, the density

function of the magnitudes of structure factors with fractional

indices P(|F|) do not have universal properties and depend on

the structure complexity (Giacovazzo & Siliqi, 1998).

We have found a useful constraint that can be used for all

re¯ections (Bragg and non-Bragg) in reciprocal space and that

is also applicable in real space. In a Fourier transform calcu-

lation, the potential (or charge density) of a crystal is ®rstly

sampled into grid points in real space, and the diffraction

pattern after transformation is also a discrete function,

represented by grid points in reciprocal space. Some distances

are preserved by Fourier transform, i.e.

P
x;y

jg�x; y�j2 �P
u;v

jG�u; v�j2�p �10�

for a two-dimensional Fourier transform

g�x; y�  !Fourier transform
G�u; v�, where p is the number of grid

points. Letting hjG�u; v�j2i �Pu;v jG�u; v�j2=p represent the

mean square of the structure-factor magnitudes, we have:P
x;y

jg�x; y�j2 �hjG�u; v�j2i: �11�

Similarly, we haveP
x;y

jf �x; y�j2 �hjF�u; v�j2i and
P
x;y

jf �x; y�j2 �P
x;y

jg�x; y�j2

since g(x, y) is an expansion of f(x, y) by adding zeros. Finally,

it can be shown that

hjF�u; v�j2i � hjG�u; v�j2i �P
x;y

jg�x; y�j2: �12�

Equation (12) can thus be used as a constraint in both real and

reciprocal space.

For phase retrieval in crystallography, atomicity constraints

are used in direct methods, and these can also be a useful

constraint. The Sayre equation (Sayre, 1952) expresses

atomicity by using scattering factors for the normal and

squared electron density. The Sayre equation is normally

expressed in reciprocal space:

F�h� � ���h�=V�P
k

F�k�F�hÿ k�; �13�

where the scale factor �(h) is the ratio of the scattering factors

of the real and squared atoms, h and k are reciprocal-lattice

vectors and V is the volume of the unit cell. Taking the inverse

Fourier transform of (13), Sayre's equation is expressed in real

space as (Woolfson & Fan, 1995)

��n� � �V=N�P
m

�2�m�	�nÿm�; �14�
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Figure 3
Application of the Sayre constraint in real space [equation (14)] of an estimated (010) projected potential of the �-copper phthalocyanine structure (a)
gives rise to (b).
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where �(n) is the electron density (potential for electron

diffraction) expressed as a discrete function evaluated at N

grid points, and 	(n) is the Fourier transform of �(h). We have

used (14) as a real-space constraint to save computing time

[compared to (13)]. Fig. 3 shows an example of the application

of Sayre's equation, which has an effect similar to contrast

enhancement in image processing. In our tests, however, it was

not found useful to greatly enhance the contrast of the current

reconstructed potential since this would drive the iteration

into a local minimum and lead to stagnation.

Non-negativity and the support constraint are the two

fundamental constraints in HiO, and the iterations do not

converge without them. We have used the (010) projection of

the �-CuPc structure to test the effects of the constraints. Fig.

4(a) shows the results of phase extension when all the other

constraints (i.e. constraints of symmetry, equal mean and real-

space histogram) other than non-negativity and the support

constraint were excluded. The cross correlation was 0.86 after

100 iterations. This shows that, although those constraints

cannot be used alone to solve by ab initio phase identi®cation,

they help to ®nd the solution more quickly. The magnitudes of

the non-Bragg beams calculated using (2) and (3) are also

important. Fig. 4(b) shows the results when those magnitudes

were not included ± we ®nd that CC drops to 0.82 after 100

iterations.

Although there still appears to be no way to use the itera-

tive algorithm to solve the phase problem ab initio in crystals

using only the magnitudes of the Bragg re¯ections, we have

shown by simulation that such an iterative process can be used

for phase extension and improvement. This is not completely

unexpected since it has already been noted that the iterative

algorithm works with incomplete data sets (Weierstall et al.,

2001). This process can be greatly improved by calculating the

fractional-index re¯ections using the Shannon sampling

theorem and Hilbert transform. We then ®nd that having the

phases of a small set of strong re¯ections is suf®cient for phase

extension. The small number of known phases can be obtained

using either direct methods or from a high-resolution electron-

microscope image. The combination with direct methods may

be especially bene®cial.

5. Conclusions

The iterative Fienup±Gerchberg±Saxton HiO algorithm has

been shown to be effective for phase extension and

improvement. Based on an incomplete set of phases, the

magnitudes of many non-Bragg re¯ections with fractional

indices can be calculated with high accuracy using equations

derived from the Shannon sampling theorem and the Hilbert

transform. This greatly improves the performance of the

iterative algorithm and the results of our tests, using a cross-

correlation coef®cient, improved from 0.81 to 0.96. In addi-

tion, the resolution improved from 2.4 to 0.9 AÊ . Although

previously the HiO algorithm has been commonly used for

retrieving phases from `oversampled' intensity in reciprocal

space from non-periodic objects, we show here that it can also

be used for undersampled (Bragg beam) data for phase

extension in crystals.
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